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A Innovative framework, Vadara:

* unique set of features

* decoupled from the CP

* generic regarding the employed elasticity strategy

 bypasses CP elasticity lock-in
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INDIVIDUAL METHODS: dynamically pad a methods’ original forecast
based on the most recent prediction errors of under and over-provisioning.

|, Calculate EME = weighted average of error observations where most
recent observations have more weight.

2. Count the number of errors for both occurrences.

3. Padding value is a weighted average of both EMEs, where the weights are
the ratios of over- and under-provisioning occurrences

pad, = %OEMEt(Ot) : ”nU EME,(U,)
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ENSEMBLE METHOD: a weighted kINN-like algorithm by most recent forecast
performance:

|. Compute p individual forecasting methods (previously padded)
PEReEdcaimeihod p compute the EME of its accuracy (MAPE)

3. Choose the k individual methods that have recently been closer to the real
workload value

4. Calculate the final forecast value:

k
th — sznt,WIth W; — /EMEt(Atk)
1=1
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» Does Vadara correctly handles cloud application’s

behaviour?

e Can 1t handle more than one CP!?

* Does our ensemble approach correctly forecasts clouad
application’s demand?

* How does 1t compare to individual methods!?
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CONTRIBUTIONS

 Vadara: generic framework that allows the development of CP
agnostic strategies.

* Padding system: for demand forecasts based on most recent under
and over-provisioning observations

- Ensemble forecasting algorithm: a weighted kNN-like algorithm
by most recent forecast performance

|, Reduction in under-provisioning observations in over | 5%

2. MAPE reduction in more than half
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* Frameworks:
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* Yang et al, Mao et al., Kranas et al. features as Vadara

* Demand forecasting:

High number of under-
B et al. | lang et al., Gandhi et al. provisioning
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