VADARA

PREDICTIVE ELASTICITY FOR CLOUD APPLICATIONS

JOÃO LOFF & JOÃO GARCIA

INSTITUTO SUPERIOR TÉCNICO - UNIVERSIDADE DE LISBOA INESC-ID LISBOA

IEEE CLOUDCOM 2014

Current CP elasticity mechanisms:

Current CP elasticity mechanisms:

No standardised CP
 model

Current CP elasticity mechanisms:

- No standardised CP
 model
- CP elasticity lock-in

Current CP elasticity mechanisms:

- No standardised CP
 model
- CP elasticity lock-in
- Mostly reactive based solutions

Current CP elasticity mechanisms:

- No standardised CP
 model
- CP elasticity lock-in
- Mostly reactivebased solutions

Hinders developers from:

Current CP elasticity mechanisms:

- No standardised CP model
- CP elasticity lock-in
- Mostly reactivebased solutions

Hinders developers from:

Re-using knowledge
 between platforms

Current CP elasticity mechanisms:

- No standardised CP model
- CP elasticity lock-in
- Mostly reactive based solutions

Hinders developers from:

- Re-using knowledge
 between platforms
- Developing reusable elasticity algorithms

Current CP elasticity mechanisms:

- No standardised CP model
- CP elasticity lock-in
- Mostly reactivebased solutions

Hinders developers from:

- Re-using knowledge
 between platforms
- Developing reusable elasticity algorithms
- Develop innovative solutions: predictive

GOAL

We aim for elasticity strategies independent from:

GOAL

CP

We aim for elasticity strategies independent from:

GOAL

We aim for elasticity strategies independent from:

CP

Application

GOAL

We aim for elasticity strategies independent from:

CP

Application

Workload Pattern

A innovative framework, Vadara:

- A innovative framework, Vadara:
- unique set of features

- A innovative framework, Vadara:
- unique set of features
- decoupled from the CP

- A innovative framework, Vadara:
- unique set of features
- decoupled from the CP
- generic regarding the employed elasticity strategy

- A innovative framework, Vadara:
- unique set of features
- decoupled from the CP
- generic regarding the employed elasticity strategy
- **bypasses** CP elasticity lock-in

[or

https://github.com/jfloff/vadara

FORECASTING

FORECASTING

Known forecasting methods are only concerned with how close they are to the real value

FORECASTING

Known forecasting methods are only concerned with how close they are to the real value

FORECASTING

Known forecasting methods are only concerned with how close they are to the real value

Goal: take a known forecasting method and dynamically pad its value, fixing under and over-provisioning occurrences

INDIVIDUAL METHODS: dynamically pad a methods' original forecast based on the most recent prediction errors of under and over-provisioning.

 $pad_t =$

INDIVIDUAL METHODS: dynamically pad a methods' original forecast based on the most recent prediction errors of under and over-provisioning.

 Calculate EME = weighted average of error observations where most recent observations have more weight.

 $pad_t =$

INDIVIDUAL METHODS: dynamically pad a methods' original forecast based on the most recent prediction errors of under and over-provisioning.

I. Calculate **EME** = weighted average of error observations where most recent observations have more weight.

$$pad_t = EME_t(O_t) + EME_t(U_t)$$

INDIVIDUAL METHODS: dynamically pad a methods' original forecast based on the most recent prediction errors of under and over-provisioning.

- I. Calculate **EME** = weighted average of error observations where most recent observations have more weight.
- 2. Count the number of errors for both occurrences.

$$pad_t = \frac{n_O}{n} EME_t(O_t) + \frac{n_U}{n} EME_t(U_t)$$

INDIVIDUAL METHODS: dynamically pad a methods' original forecast based on the most recent prediction errors of under and over-provisioning.

- Calculate EME = weighted average of error observations where most recent observations have more weight.
- 2. Count the number of errors for both occurrences.
- 3. Padding value is a weighted average of both EMEs, where the weights are the ratios of over- and under-provisioning occurrences

$$pad_t = \frac{n_O}{n} EME_t(O_t) + \frac{n_U}{n} EME_t(U_t)$$

PADDING

BEHAVIOUR

BEHAVIOUR

Holt-Winters

StructTS

ARIMA

BEHAVIOUR

Holt-Winters

StructTS

ARIMA

ENSEMBLE METHOD: a weighted kNN-like algorithm by most recent forecast performance:

I. Compute *p* individual forecasting methods (previously padded)

- I. Compute *p* individual forecasting methods (previously padded)
- 2. For each method p compute the EME of its accuracy (MAPE)

- I. Compute *p* individual forecasting methods (previously padded)
- 2. For each method *p* compute the EME of its accuracy (MAPE)
- 3. Choose the k individual methods that have recently been closer to the real workload value

- I. Compute *p* individual forecasting methods (previously padded)
- 2. For each method *p* compute the EME of its accuracy (MAPE)
- 3. Choose the k individual methods that have recently been closer to the real workload value
- 4. Calculate the final forecast value:

$$\hat{Y}_t = \sum_{i=1}^k w_i Y_{kt}$$
, with $w_i = \frac{1}{EME_t(A_{tk})}$

Does Vadara correctly handles cloud application's behaviour?

- Does Vadara correctly handles cloud application's behaviour?
- Can it handle more than one CP?

- Does Vadara correctly handles cloud application's behaviour?
- Can it handle more than one CP?
- Does our ensemble approach correctly forecasts cloud application's demand?

- Does Vadara correctly handles cloud application's behaviour?
- Can it handle more than one CP?
- Does our ensemble approach correctly forecasts cloud application's demand?
- How does it compare to individual methods?

2.5% MAPE — 55% Improvement

CPU Bound application

Stays maximized!

For individual methods, using padding:

For individual methods, using padding:

 Reduction in observed under-provisioning occurrences (30% on average)

For individual methods, using padding:

 Reduction in observed under-provisioning occurrences (30% on average)

Ensemble method:

For individual methods, using padding:

 Reduction in observed under-provisioning occurrences (30% on average)

Ensemble method:

• Less than 22% of underprovisioning occurrences

- For individual methods, using padding:
 - Reduction in observed under-provisioning occurrences (30% on average)

Ensemble method:

- Less than 22% of underprovisioning occurrences
- Near 65% of overprovisioning occurrences

- For individual methods, using padding:
 - Reduction in observed under-provisioning occurrences (30% on average)

Ensemble method:

- Less than 22% of underprovisioning occurrences
- Near 65% of overprovisioning occurrences
- Near 13% of near
 'perfect' forecasts

• **Vadara:** generic framework that allows the development of CP agnostic strategies.

- **Vadara:** generic framework that allows the development of CP agnostic strategies.
- **Padding system:** for demand forecasts based on most recent under and over-provisioning observations

- **Vadara:** generic framework that allows the development of CP agnostic strategies.
- **Padding system:** for demand forecasts based on most recent under and over-provisioning observations
- Ensemble forecasting algorithm: a weighted kNN-like algorithm by most recent forecast performance
CONTRIBUTIONS

- **Vadara:** generic framework that allows the development of CP agnostic strategies.
- **Padding system:** for demand forecasts based on most recent under and over-provisioning observations
- Ensemble forecasting algorithm: a weighted kNN-like algorithm by most recent forecast performance
 - I. Reduction in under-provisioning observations in over 15%

CONTRIBUTIONS

- **Vadara:** generic framework that allows the development of CP agnostic strategies.
- **Padding system:** for demand forecasts based on most recent under and over-provisioning observations
- Ensemble forecasting algorithm: a weighted kNN-like algorithm by most recent forecast performance
 - I. Reduction in under-provisioning observations in over 15%
 - 2. MAPE reduction in more than half

THANKYOU!

QUESTIONS?

• State of the art: Galante et al. and Lorido-Botrán et al.

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure
- CMPs: RightScale, Sclar, Enstratius, AzureWatch

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure

Doesn't allow the development of predictive strategies

CMPs: RightScale, Sclar, Enstratius, AzureVVatch

- State of the art: Galante et al. and Lorido-Botrán et al.
- CPs: AWS, Rackspace, Azure

CMPs: RightScale, Sclar, Enstratius, AzureVVatch

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure

- CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure

- CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:
 - Yang et al., Mao et al., Kranas et al. and Morais et al.

- State of the art: Galante et al. and Lorido-Botrán et al.
- CPs: AWS, Rackspace, Azure

- CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:
 - Yang et al., Mao et al., Kranas et al.

Doesn't offer the same set of features as Vadara

- State of the art: Galante et al. and Lorido-Botrán et al.
- CPs: AWS, Rackspace, Azure

- CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:
 - Yang et al., Mao et al., Kranas et al.
- Demand forecasting:

Doesn't offer the same set of features as Vadara

RFI ATFD WORK

- State of the art: Galante et al. and Lorido-Botrán et al.
- **CPs:** AWS, Rackspace, Azure
- D It's another form of lock-in CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:
 - Yang et al., Mao et al., Kranas et al.
- Doesn't offer the same set of features as Vadara

- **Demand forecasting:**
 - Shen et al., Jiang et al., Gandhi et al., Roy et al.

- State of the art: Galante et al. and Lorido-Botrán et al.
- CPs: AWS, Rackspace, Azure
- CMPs: RightScale, Sclar, Enstratius, AzureVVatch
- Frameworks:
 - Yang et al., Mao et al., Kranas et al.
- Demand forecasting:
 - Shen et al., Jiang et al., Gandhi et al.

Doesn't offer the same set of

features as Vadara

D It's another form of lock-in