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Current CP elasticity 
mechanisms:

• No standardised CP 
model

• CP elasticity lock-in

• Mostly reactive-
based solutions

Hinders developers from:

• Re-using knowledge 
between platforms

• Developing reusable 
elasticity algorithms 

• Develop innovative 
solutions:  predictive
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A innovative framework, Vadara:

• unique set of features

• decoupled from the CP

• generic regarding the employed elasticity strategy

• bypasses CP elasticity lock-in

SOLUTION
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https://github.com/jfloff/vadara

https://github.com/jfloff/vadara
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INDIVIDUAL METHODS: dynamically pad a methods’ original forecast 
based on the most recent prediction errors of under and over-provisioning.

1. Calculate EME = weighted average of error observations where most 
recent observations have more weight.

2. Count the number of errors for both occurrences.

3. Padding value is a weighted average of both EMEs, where the weights are 
the ratios of over- and under-provisioning occurrences
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Mean Average 
Percentage Error 
(MAPE): 

• No padding: 3.2% 

• Fixed padding: 5.1% 

• Dynamic padding: 
4.2%
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ENSEMBLE METHOD: a weighted kNN-like algorithm by most recent forecast 
performance:

1. Compute p individual forecasting methods (previously padded)

2. For each method p compute the EME of its accuracy (MAPE)

3. Choose the k individual methods that have recently been closer to the real 
workload value

4. Calculate the final forecast value:
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• Does Vadara correctly handles cloud application’s 
behaviour?

• Can it handle more than one CP?

• Does our ensemble approach correctly forecasts cloud 
application’s demand?

• How does it compare to individual methods?
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2.5% MAPE — 55% Improvement
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CPU Bound application 
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Stays maximized!
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For individual methods, using 
padding:

• Reduction in observed 
under-provisioning 
occurrences (30% on 
average)

Ensemble method:

• Less than 22% of under-
provisioning occurrences

• Near 65% of over-
provisioning occurrences

• Near 13% of near 
‘perfect’ forecasts
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• Vadara: generic framework that allows the development of CP 
agnostic strategies.

• Padding system: for demand forecasts based on most recent under 
and over-provisioning observations

• Ensemble forecasting algorithm: a weighted kNN-like algorithm 
by most recent forecast performance

1. Reduction in under-provisioning observations in over 15%

2. MAPE reduction in more than half
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• CPs: AWS, Rackspace, Azure

• CMPs: RightScale, Sclar, Enstratius, AzureWatch

• Frameworks:

• Yang et al., Mao et al., Kranas et al. and Morais et al.

• Demand forecasting:

• Shen et al. , Jiang et al. , Gandhi et al. , Roy et al.

RELATED WORK

19

Doesn’t offer the same set of 

features as Vadara

High number of under-

provisioning

Doesn’t allow the development 

of predictive strategies
It’s another form of lock-in


