
Vadara: Predictive Elasticity for Cloud Applications

João Loff, João Garcia

INESC-ID Lisboa, Instituto Superior Técnico - Universidade de Lisboa, Portugal

joao.loff@tecnico.ulisboa.pt, joao.c.garcia@tecnico.ulisboa.pt

Abstract—Elasticity is a key feature in cloud computing, and
perhaps what distinguishes it from other computing paradigms.
Despite the advantages of elasticity, realizing its full potential
is hard due to multiple challenges stemming from the need to
estimate workload demand. A desirable solution would require
predicting system workload and allocating resources a priori,
i.e., a predictive approach. Instead, what is mainly available are
reactive solutions, requiring difficult parameter tuning.

Since each Cloud Provider (CP) has its own implementation
idiosyncrasies, it’s impossible for developers to: (i) learn only
about one platform and re-use that knowledge in others; (ii)
migrate developed elasticity solutions between different CPs; and
(iii) to develop reusable predictive elasticity rules or algorithms.

This paper makes three contributions to provide an effective
elasticity environment. First, Vadara, a totally generic elasticity
framework, that transparently connects and abstracts several
CPs API behaviour, and enables the use of pluggable CP-agnostic
elasticity strategies.

Second, it presents a predictive workload forecasting approach,
which ensembles several individual forecasting methods, and
introduces a padding system based on the most recent prediction
errors for both under- and over-provisioning.

Finally, results show (1) Vadara’s successful connection to
well-known CPs, (2) the improvements made regarding under-
and over-provisioning due to our padding system, and (3) the
effectiveness of our ensemble forecasting technique.

Keywords-cloud computing; elasticity; demand forecasting;
ensemble forecasting; cloud monitoring

I. INTRODUCTION

One of the key goals of cloud computing is the elasticity

of computational resources. Users expect CPs to provide

any quantity of resources on short notice. In particular, it’s

expected that the resources can be (1) provisioned when an

application load increases (scale up) and (2) released when

load decreases (scale down) [1]. A system’s ability to adapt

to workload changes by allocating and deallocating resources,

such that at each moment the available resources match the

current demand as closely as possible, is called elasticity [2].

Despite the perceived advantages of elasticity, realizing its

full potential is hard due to multiple challenges stemming

from the need to precisely estimate resource usage in the

face of significant variability in workload patterns. A desirable

solution would require an ability to predict the incoming

workload on the system and allocate resources a priori. This

capability in turn will enable the application to be ready to

handle the load increase when it actually occurs [3].

Instead, what current CPs offer are reactive-based solutions

(e.g. [4]). In this type of system, a given threshold or rule has

to be breached before the system reacts and changes [5], [6].

These solutions require expert and tedious human development

and maintenance interventions. Fine tuning for the specific

demand pattern is necessary for it to yield better results, which

is often difficult to figure out [3], [7].

Current cloud computing APIs have not been the subject of

active standardization [5]. Thus, customers can’t easily migrate

their data and programs from one provider to another. This

issue is known as CP lock-in, one of the key issues identified

as holding back the expansion of cloud computing [1], [8].

The obvious solution is to standardize the APIs so that any

cloud application user could deploy services and data across

multiple CPs [5].

Moreover, users should be allowed, using the most common

CP monitoring and scaling interfaces, to design customized

elasticity algorithms that can be plugged into any existing CP

without additional tinkering [9].

Vadara is a new, totally generic framework regarding

the employed elasticity strategy; that bypasses CP elasticity

lock-in, allowing the development of elasticity strategies that

are not tied with any CP; that abstracts the CPs APIs and

design specificities thereby decoupling elasticity from any

underlying CP; that allows a cloud application to be deployed

at multiple CPs at the same time; and that takes full-period

and instance startup time issues into consideration.

In addition to the framework, we also present results from

deploying Vadara on several CPs using various elasticity

strategies that forecast the future workload demand based

on metrics retrieved from CPs monitoring APIs. This type

of approach, called predictive, uses heuristics and analytical

techniques to anticipate the system load, and based on these

results, decides when and how to scale resources [5].

Our predictive approach uses a new padding technique for

several individual forecasting methods, based on the most re-

cent prediction errors for under- and over-provisioning. Those

individual methods are then combined in a single forecasting

technique, that uses a weighted k-Nearest Neighbors (kNN)

algorithm.

In short, this paper’s contributions are:

• Proposing Vadara a totally generic framework regarding

the employed elasticity strategy that allows the develop-

ment of CP agnostic elasticity approaches.

• Introducing a padding technique for demand forecasts

that takes into account recent prediction errors and past

occurrences of under- and over-provisioning, for a variety

of individual forecasting methods.

• Advancing a new ensemble forecasting algorithm, a k-

Nearest Neighbors (kNN) algorithm weighted by recent

forecast performance.



• Describing a series of experiments that test our proposed

forecasting techniques, using trace data from Google

Cluster Data [10]. The evaluation results demonstrate that

our methods are effective.

This paper continues with the definition of cloud elasticity

challenges (Sec. II). We follow that with a description of

Vadara’s architecture (Sec. III), and of the methodology for

our forecasting techniques (Sec. IV). This is succeeded by

the results of Vadara’s evaluation using a variety of forecast-

ing techniques, including our proposed forecasting technique

(Sec. V). We conclude with an overview of the current

cloud elasticity ecosystem (Sec. VI), and some final remarks

(Sec. VII).

II. CLOUD ELASTICITY CHALLENGES AND ISSUES

This section discusses the challenges to realizing elastic

resource provisioning for cloud-based applications.

A. Cloud interoperability

A possible solution to the resource availability problem is

the use of multiple clouds to ensure the required amount of

resources. According to Galante et al. [5] even though there’s

some academic work regarding combining local and public

clouds, the combined use of different public clouds remains

challenging. The reason for the current poor portability and

limited interoperability between clouds is the lack of standard-

ized API’s. Consequently, each cloud provider has its own way

of interacting with cloud clients/applications/users [8].

B. Startup time

One important fact in the cloud elasticity process is that

although cloud users can make their acquisition requests at

any time, it may take some time for the acquired resources

to be ready to use. This is called startup time [11], [12]. In

a perfectly elastic cloud, there would be no time delay be-

tween detecting load changes and changing resourcing levels.

However, in real world clouds, the startup time can vary (as

seen in [13]). Thus, resources provisioning could be slower

than expected, affecting the efficacy and efficiency of elasticity

mechanisms [5].

C. Full-period

Imagine a developer has already paid for a full rental period

(e.g. one hour) of a computing instance and orders it to

shutdown before the rental ends. In this situation there’s no

need to shut it down before the full-rental period is complete.

This issue is known as the full-period issue and a reasonable

policy is that whenever an instance is started, it is better to

shut it down only when approaching full period operation [12].

D. Workload forecasting

Realizing the full potential of cloud elasticity is hard due

to multiple challenges stemming from the need to precisely

estimate resource usage in the face of significant variability

in client workload patterns. It’s desirable that the resources

can be acquired earlier than the time when workload actually

increases [14]. This outcome can only be possible if the future

workload can be predicted, possibly using historical data.

III. VADARA’S ARCHITECTURE

In this section we start by defining the requirements for

building a framework such as Vadara. We then present its

architecture and typical workflow.

A. Requirements

From the defined challenges (Section II), we’ve define

Vadara’s requirements:

• It has to work with any CP. Extensions to connect with

any of the providers should be developed and easily

plugged into the framework. It has to be extensible

and decoupled from any CP, abstracting the underlying

infrastructure.

• It should allow the development of totally generic elasti-

city strategies and the resulting modules should be

seamlessly pluggable into the framework. Furthermore,

connectors between Vadara and the elasticity approach

should be simple and clear.

• It should work with multiple CPs simultaneously. The

framework should generalize the interaction between

Vadara and the CPs, thereby standardizing all CPs APIs.

• It should store information regarding instances launch

and startup times, enabling the framework to track CPs

startup times, and instances full-period status. Hence,

a data repository specialized in time-series should be

available within the framework.

B. Architecture

On the left side of Fig. 1, we can see a typical CP platform

with the computing nodes where applications run. Vadara

assumes that the application running at the CP is a cloud

application that can seamlessly scale out. We have two core

cloud services1 that act upon those nodes: the scalability

service, responsible for executing scaling commands over the

node group (i.e. adding or deleting nodes); and the monitoring

service, responsible for answering requests for performance

metrics from the existing nodes (e.g. current CPU load). In

order to connect to Vadara, a CP only has to provide APIs

for monitoring and scaling, both common in today’s CPs (e.g.

[4], [15]).

On the right of Fig. 1 we have Vadara’s four main compo-

nents and a fifth data storage component:

core: it coordinates the initialization of all Vadara’s com-

ponents. It’s responsible for correctly configuring and

initializing all the other components, including the CP

extensions.

decider: it’s responsible for pondering which elasticity actions

to take. It starts by requesting the monitor instance

metrics. Upon receiving those metrics it analyses them,

taking the appropriate action. That decision is then com-

municated to the scaler.

monitor: it’s the bridge between the decider and the CPs

monitoring services. It’s responsible for forwarding the

1We decided to call services to actions that CPs make available to users
(usually through an API).



Fig. 1. Vadara’s Architecture

decider’s metric requests to the various CPs monitoring

services. Once it has all the CPs replies, it aggregates

them and replies to the decider.

scaler: it’s the bridge between the decider and the CPs

scalability services. It’s responsible for forwarding the

decider’s scaling requests to the various CPs scalability

services. Once is has all the CPs replies, it aggregates

them and replies to the decider. Furthermore, it’s res-

ponsible for keeping track of each instance’s full-period

status and startup times.

repository: it’s responsible for persistently storing any in-

formation required by other components (e.g., metrics

received, CP instance startup time).

Between Vadara and the CP platforms, we have the CP

extensions, which act as adapters between Vadara and each CP.

Each of these extensions has three components, similar to the

ones we find in Vadara. The extension’s core is responsible for

initializing all extension components. The extension’s monitor

is responsible for translating between Vadara’s and CP metric

definitions, and to perform the correct CP monitor API call.

The extension’s scaler is responsible for translating between

Vadara’s and CP scaling concepts, and then performing the

correct CP scaling API call.

In order to achieve API standardization, we created a

common terminology to be used within Vadara’s components.

This terminology, standardizes CPs services, enabling deciders

to use the same API call for different CPs. At the same

time, Vadara allows deciders to use CP specific API calls and

concepts, allowing developers to build deciders that run within

Vadara but interface only with a specific CP.

C. Execution Workflow

Vadara operates on a simple three step loop. First, the

decider asks the monitor for metric data. The monitor for-

wards that request to the available CP extensions, which in

turn forward it to the corresponding CP. Upon receiving the

answers, the monitor aggregates them, replying back to the

decider. Second, and using that reply and additional historical

data, the decider chooses an action to take accordingly to its

defined logic (e.g. a forecasting algorithm). Finally, the decider

passes that decision onto the scaler. The scaler then forwards

it to the available CP extensions, which in turn forward it to

its CPs.

Note that the decider can store in the repository any data

it wants. This information can be invaluable to improve

the decider’s decisions. Also stored into the repository is

information regarding each instance launch time, used to track

its full-hour period, and instances startup times. This behavior

is built into the scaler, so each CP extension does not need to

re-implement this.

IV. WORKLOAD FORECASTING METHODOLOGY

Workload forecasting techniques allow elasticity solutions

to predict the future system load and allocate resources a

priori. This enables applications to handle the load increase

when it actually occurs. The best capacity predictor should

be the one that minimizes the sum of errors over multiple

forecasts, specially under-provisioning errors since they may

cause significant Service Level Agreement (SLA) violations.

We first detail our padding technique for individual forecast-

ing methods, and then we explain our ensemble forecasting

approach. Lastly, we discuss forecast accuracy measures.

A. Individual forecasting methods

For each one-step-ahead forecast we observe under-

provisioning (Ut) and over-provisioning (Ot) situations, count-

ing their occurrences (nU and nO respectively), and recalcu-

late their Exponential Mean Error (EME) (EMEt(Ut) and

EMEt(Ot)). EME is a weighted average based on simple

exponential smoothing, where weights exponentially increase

over time, i.e. most recent error observations have more weight

than older ones. It’s given by,

EMEt(Yt) = αYt+(1−α)EMEt−1(Yt−1), 0 ≤ α ≤ 1, (1)

where Yt is the new observed value at time t, EMEt−1 is

the previous EME at time t− 1, and α is a smoothing factor

optimized minimizing the sum of squared one-step forecast

errors. If Ŷt is the prediction of Yt then et = Yt − Ŷt is the

one-step forecast error, hence, we aim to minimize
∑

e2t . Just

like in Jiang et al. [14] approach, we are actually splitting our

time-series into under- and over-provisioning components, to

better analyze contributions from each one.

Adopting an approach based on Shen et al. [16], we calcu-

late a padding value to add to each forecast. This padding

aims to avoid under-provisioning errors by adding a small

extra value to the predicted resource demand. Our approach

is based on the observation that under-provisioning errors are



(a) (b) (c)

Fig. 2. One the left (Fig. 2(b)) we have our ensemble forecasting method using Google Cluster Data trace. Grey area represents a forecast confidence interval
of 80%. For the same run, we have on the middle (Fig. 2(b)) the number of instances for AWS and Rackspace initiated through Vadara, and on the right (Fig.
2(c)) CPU usage.

often caused by resource usage bursts. Thus, we choose the

padding value based on the recent burstiness of application

resource usage and recent prediction errors. Hence, we use

EME (Equation 1) to measure errors from previous forecasts.

The padding value is a weighted average between observed

under- and over-provisioning occurrences,

padt =
nO

n
EMEt(Ot) +

nU

n
EMEt(Ut), (2)

where n is the total number of previous observations. Note

that since over-provisioning errors are negative, padt can also

be negative if over-provisioning contribution is bigger than

under-provisioning. Finally the forecast at time t can be given

by Ŷt = padt+ v̂p(t), where v̂p(t) is the predicted value given

by a specific individual forecasting method p for a time t.

B. Ensemble forecasting methods

To better capture the temporal dynamics of the workload

demand, we propose the combination of multiple forecasting

methods for two reasons: (1) the robustness of the ensemble

method mitigates the risk of large deviation for prediction

results, and (2) the ensemble method is on average better than

an individual predictor [14], [17]–[19].

Literature [18], [19] shows that when there is much uncer-

tainty in finding the best model, like in the present work, com-

bining may improve prediction accuracy. Further, according

to Armstrong [20], combining is more useful for short range

forecasting, like in the present work, where random errors are

more significant.

Our technique for combining forecasting methods is based

on a weighted k-Nearest Neighbors (kNN) algorithm [21],

which outputs a weighted average of the k methods with the

lowest error value for recent forecasts. The weight for each

individual method is equal to the inverse of the recent forecast

performance. Recent forecast performance is measured by

applying EME to the individual method’s forecast accuracy

values (At). The forecast value for the ensemble approach is

given by,

Ŷt =
k∑

i=1

wiYpt
,with wi =

1/EMEt(Atp )
, (3)

where k is
√
n (Duda et al. [21]) and n is the number of

individual methods used. Ypt
is the forecast from an individual

forecasting method p. EMEp(Atp) is the EME of accuracy

values At for the same individual method p.

C. Forecast Accuracy measure

There is no universally preferred measure of accuracy

estimation in forecasting, therefore experts often disagree as

to which measure should be used [22]. We’ve selected Mean

Absolute Percentage Error (MAPE) to measure accuracy in our

work, as it’s widely used in cases of combining and selecting

forecasts [18], [19].

V. EVALUATION

We aimed to evaluate Vadara’s ability to correctly and

timely control elasticity behavior. We evaluated how Vadara

adjusts a cloud-based application, deployed on both AWS

and Rackspace, in order to maintain a stable CPU load on

the computing nodes while saving the cost of additional

computing nodes whenever possible.

AWS ran ‘t2.micro’ nodes with 1 vCPU and 1GB of RAM

memory. Rackspace ran ‘512MB Standard Instance’ with 1

vCPU and 512MB of RAM memory. Both providers also ran

a load-balancer to distribute the requests amongst all the nodes,

using a round-robin approach.

We used TraceVersion1 of the Google Cluster Data trace

[10]. Other authors [6] concur that this is a generic trace that

includes both medium and short term burstiness patterns. The

workload consists of a sequence of web requests, that occur

at a 5 minute interval timestamp, over a 7 hour period. The

number of requests was aggregated by timestamp.

We used a selection of common forecasting algorithms and

also our ensemble forecasting algorithm, to demonstrate that

Vadara transparently manages cloud applications’ elasticity.



A. Individual Forecasting Methods

Three individual methods were chosen to analyze our

padding system: Holt-Winters, ARIMA and StructTS. These

are known methods used to perform time-series forecasting in

cloud elasticity scenarios [3], [6], [7], [14].

The addition of padding to the standard forecasting lowered

observed under-provisioning occurrences from 50% to 22% in

Holt-Winters, from 46% to 13% in ARIMA, and from 54%

to 18% in StructTS. Observed over-provisioning raised at the

same rate, from 50% in Holt-Winters, 54% in ARIMA and

46% in StructTS to 78%, 87% and 82% respectively.

B. Ensemble approach: kNN Weighted Average

In Fig. 2(a) we applied our ensemble forecasting approach

by combining Holt-Winters, ARIMA, and StructTS, all using

our padding technique. Observed under-provisioning occur-

rences increased relatively to individual approaches, near 12%.

Meanwhile, over-provisioning situations stayed near 65%.

With this approach we also got an increase in near perfect

forecast situation, with over 13%.

However, under- and over-provisioning are not the litmus

test for forecasting since big and small errors become in-

distinguishable within those metrics. In terms of MAPE, a

more clarifying metric in this case, the ensemble approach

has a MAPE of 2.5%, a staggering improvement over any of

the individual techniques: 5.7% for Holt Winters, 4.7% for

ARIMA, and 4.3% for StructTS.

Finally, by plugging in our ensemble forecaster as the

Vadara decider and injecting the trace onto our application, we

can see (Fig. 2(b)) that, due to demand being closely forecast,

the total computing nodes requested by the decider follows

the pattern of the real demand. AWS nodes respond faster

to changes in workload due to a faster instance startup time,

meanwhile, due to a slower startup time, Rackspace exhibits

longer periods of under-provisioning.

Moreover, we kept resources maximized throughout the

trace’s duration, since CPU utilization averaged near 89% with

a standard deviation of less than 5% (2(c)), an even more

significant result due to the trace’s high burstiness degree.

VI. RELATED WORK

For a comprehensive study regarding the state of the art

of elasticity in the cloud, in both commercial and academic

solutions, readers are referred to Galante et al. [5] and Lorido-

Botrán et al. [6]. We highlight the most prominent elasticity-

related solutions regarding (1) reactive approaches, (2) pre-

dictive approaches, and (3) frameworks that support those

approaches.

A. Reactive approaches

Reactive, or threshold-based, solutions typically require the

user to specify the threshold values on the resource usage (e.g.,

requests per second). Those thresholds, when reached, trigger

actions on the underlying cloud. Such rule-based approaches

depend on manual tuning to the specific demand pattern, to

yield better results. However, it is often difficult for users

to figure out the proper scaling conditions. By contrast, our

approach does not require the user to specify any scaling rules.

The use of reactive techniques is quite common and is found

in most commercial solutions, such as provided by Amazon

Web Services (AWS) [4], RightScale [23], Scalr [24], and

Enstratius [25]. Vaquero et al. [26] present a comprehensive

survey on reactive-based academic solutions, discussing works

focused on control theory applied to reactive solutions, and

also on the standardization of user-defined rules.

B. Predictive approaches

Predictive approaches use heuristics and analytical tech-

niques together with historical data to predict future demand

and proactively allocate resources. Apart from AzureWatch

[27], which works exclusively with Microsoft Azure, we are

not aware of any commercial solution that uses a predictive

elasticity mechanism.

PRESS [28] and CloudScale [16] employ Fast Fourier

Transform (FFT) to identify repeating patterns, and use a

discrete-time Markov chain to predict demand for the near

future. Both approaches are focused on predicting individual

virtual machine (VM) resource demand. In our work we

predict demand for the whole cloud deployment.

Roy et al. [3] employs an autoregressive-moving-average

model (ARMA), which predicts future workload based on a

limited workload history. The ARMA model parameter choice

was optimized for the specific trace used, hindering the use of

this approach for different traces.

Jiang et al. [14] decomposes the cloud capacity into provi-

sioning and de-provisioning components, estimating each one

independently. Gandhi et. al. [7] employs Kalman filters to

automatically learn the (possibly changing) system parameters

for each application. Both approaches present a very high

number occurrences of under-provisioning, which as we saw,

is critical for cloud customers.

Saripalli et al. [29] use a two-step approach, using cubic

spline interpolation combined with a hotspot detection al-

gorithm for sudden spikes. Predicted values depend on the

window width chosen. Hence, large amounts of available data

are needed to produce confident predictions.

C. Cloud elasticity frameworks

Most commercial frameworks don’t provide a way for

customers to input their own elasticity rules and methods,

disabling them from building more complex and custom-

tailored approaches. Both Enstratius [25] and Scalr [24] allow

users to create custom rules, but only reactive ones.

Yang et al. [9], Krannas et al. [30] and Morais et al. [31]

propose frameworks that cope with cloud elasticity, but none

provide a feature set similar to Vadara’s. All are unable to work

with multiple CPs at the same time, and there’s no concern

over full-period and startup time issues. Furthermore, in [9],

it’s not possible to plugin a user specific elasticity strategy.

Meanwhile, Mao et al. [12] considers full-period and startup

time issues, but does not offer a generic framework that solves

those issues regardless of the approach used.



VII. CONCLUSIONS

Despite the perceived advantages of elasticity, realizing its

full potential is hard due to multiple challenges stemming from

the need to precisely estimate resource usage. A desirable

solution would require an ability to predict the incoming

workload and allocate resources a priori, i.e. a predictive

approach. Instead, what current CPs offer are reactive-based

solutions, requiring often difficult fine tuning for the specific

demand pattern, for them to yield better results.

We presented Vadara, an elasticity framework which enables

the creation of elasticity strategy modules that are totally

generic and pluggable into the framework. We showed that (1)

it’s highly generic and extensible to work with any CPs (even

private ones), (2) can handle multiple CP at the same time, (3)

supports multiple modular elasticity strategies, and (4) takes

into consideration full-period and startup time problems.

Moreover, we proposed an effective ensemble method to

predict future workload demand, based on a weighted kNN-

like approach that chooses the methods that were recently

closer to the actual demand. This approach relies on individual

forecasting techniques, that were padded with an over- and

under-provisioning aware methodology. With this approach,

when comparing with the typical forecasting algorithms, we

were able to reduce under-provisioning observations by over

12%, to increase accurate forecasts by nearly 13%, and to

reduce MAPE by more than half.

Acknowledgments: This work was supported by national

funds through FCT – Fundação para a Ciência e a Tecnologia,

under project PEst-OE/EEI/LA0021/2013.

REFERENCES

[1] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4,
p. 50, 4 2010.

[2] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud
computing: What it is, and what it is not,” in Proceedings of the 10th

International Conference on Autonomic Computing (ICAC 13). San
Jose, CA: USENIX, 2013, pp. 23–27. [Online]. Available: https://www.
usenix.org/conference/icac13/technical-sessions/presentation/herbst

[3] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in 2011 IEEE 4th

International Conference on Cloud Computing. IEEE, 7 2011, pp.
500–507.

[4] Amazon, “Amazon web services,” 2014, last visited: 2014/08/14.
[Online]. Available: aws.amazon.com

[5] G. Galante and L. C. E. D. Bona, “A survey on cloud computing
elasticity,” in 2012 IEEE Fifth International Conference on Utility and

Cloud Computing, no. 1. IEEE, 11 2012, pp. 263–270.
[6] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano,

“Auto-scaling techniques for elastic applications in cloud
environments,” Department of Computer Architecture and
Technology, UPV/EHU, Tech. Rep., 2012. [Online].
Available: http://www.sc.ehu.es/ccwbayes/isg/index.php?option=com
jresearch&view=publication&task=show&id=780&Itemid=89

[7] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang,
“Adaptive, model-driven autoscaling for cloud applications,” in
11th International Conference on Autonomic Computing (ICAC 14).
Philadelphia, PA: USENIX Association, 2014, pp. 57–64. [Online].
Available: https://www.usenix.org/conference/icac14/technical-sessions/
presentation/gandhi

[8] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges,” in 2010 24th IEEE International Conference on Advanced

Information Networking and Applications. IEEE, 2010, pp. 27–33.

[9] J. Yang, J. Qiu, and Y. Li, “A profile-based approach to just-in-
time scalability for cloud applications,” in 2009 IEEE International

Conference on Cloud Computing. IEEE, 2009, pp. 9–16.
[10] J. L. Hellerstein, “Google cluster data,” 2010, last visited:

2014/08/14. [Online]. Available: http://googleresearch.blogspot.com/
2010/01/google-cluster-data.html

[11] P. C. Brebner, “Is your cloud elastic enough?” in Proceedings of

the third joint WOSP/SIPEW international conference on Performance

Engineering - ICPE ’12. New York, New York, USA: ACM Press,
2012, p. 263.

[12] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud workflows,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing. IEEE, 5 2013, pp. 67–78.
[13] M. Mao and M. Humphrey, “A performance study on the vm startup

time in the cloud,” in 2012 IEEE Fifth International Conference on

Cloud Computing. IEEE, 6 2012, pp. 423–430.
[14] Y. Jiang, C.-s. Perng, T. Li, and R. Chang, “Self-adaptive cloud

capacity planning,” in 2012 IEEE Ninth International Conference on

Services Computing. IEEE, 6 2012, pp. 73–80.
[15] Rackspace, “Rackspace,” 2014, last visited: 2014/08/14. [Online].

Available: www.rackspace.com
[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic

resource scaling for multi-tenant cloud systems,” in Proceedings of the

2nd ACM Symposium on Cloud Computing - SOCC ’11. New York,
New York, USA: ACM Press, 10 2011, pp. 1–14.

[17] R. Adhikari and R. K. Agrawal, “Combining multiple time series models
through a robust weighted mechanism,” in 2012 1st International

Conference on Recent Advances in Information Technology (RAIT).
IEEE, 3 2012, pp. 455–460.

[18] C. Christodoulos, C. Michalakelis, and D. Varoutas, “Forecasting with
limited data: Combining arima and diffusion models,” Technological

Forecasting and Social Change, vol. 77, no. 4, pp. 558–565, 5 2010.
[19] H. Zou and Y. Yang, “Combining time series models for forecasting,”

International Journal of Forecasting, vol. 20, no. 1, pp. 69–84, 1 2004.
[20] J. Armstrong, “Combining forecasts: The end of the beginning or the

beginning of the end?” International Journal of Forecasting, vol. 5,
no. 4, pp. 585–588, 1 1989.

[21] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley-
Interscience, 2000.

[22] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4,
pp. 679–688, 10 2006.

[23] RightScale, “Rightscale,” 2014, last visited: 2014/08/14. [Online].
Available: http://www.rightscale.com/

[24] Scalr, “Scalr,” 2014, last visited: 2014/08/14. [Online]. Available:
http://www.scalr.com

[25] Enstratius, “Enstratius,” 2014, last visited: 2014/08/14. [Online].
Available: www.enstratius.com

[26] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” ACM SIGCOMM Computer Communication

Review, vol. 41, no. 1, p. 45, 1 2011.
[27] AzureWatch, “Azurewatch,” 2014, last visited: 2014/08/14. [Online].

Available: http://www.paraleap.com/azurewatch
[28] Z. Gong, J. Wilkes, and X. Gu, “Press: Predictive elastic resource

scaling for cloud systems,” in 2010 International Conference on

Network and Service Management. IEEE, 10 2010, pp. 9–16.
[29] P. Saripalli, G. Kiran, R. R. Shankar, H. Narware, and N. Bindal,

“Load prediction and hot spot detection models for autonomic cloud
computing,” 2011 Fourth IEEE International Conference on Utility and

Cloud Computing, pp. 397–402, 12 2011.
[30] P. Kranas, V. Anagnostopoulos, A. Menychtas, and T. Varvarigou,

“Elaas: An innovative elasticity as a service framework for dynamic
management across the cloud stack layers,” in 2012 Sixth International

Conference on Complex, Intelligent, and Software Intensive Systems.
IEEE, 7 2012, pp. 1042–1049.

[31] F. J. A. Morais, F. V. Brasileiro, R. V. Lopes, R. A. Santos,
W. Satterfield, and L. Rosa, “Autoflex: Service agnostic auto-scaling
framework for iaas deployment models,” in 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing.
IEEE, 5 2013, pp. 42–49.


