
ar
X

iv
:1

70
4.

05
11

2v
1 

 [
cs

.D
C

] 
 1

7 
A

pr
 2

01
7

Making data center computations fast, but not so furious

Daniel Porto
INESC-ID/IST – U. Lisboa

João Loff
INESC-ID/IST – U. Lisboa

Rui Duarte
INESC-ID/IST – U. Lisboa

Luis Ceze
University of Washington

Rodrigo Rodrigues
INESC-ID/IST – U. Lisboa

ABSTRACT

We propose an aggressive computational sprinting variant for data
center environments. While most of previous work on computa-

tional sprinting focuses onmaximizing the sprinting process while

ensuring non-faulty conditions, we take advantage of the existing
replication in data centers to push the system beyond its safety lim-

its. In this paper we outline this vision, we survey existing tech-
niques for achieving it, and we present some design ideas for future

work in this area.

KEYWORDS

Computational Sprinting, Overclock, Fault tolerance, Data center.

1 INTRODUCTION

Today’s global scale Internet services run in large data center in-

frastructures and are accessed by millions of users. �e sheer scale

in which these systems operate is such that the design of the infras-
tructure underlying data center systems must expect an environ-

ment where faults are the norm, and no longer the exception.
A key technique for building systems to provide high availabil-

ity despite faults is to employ redundancy, o�en through the use of

distributed replication protocols. However, this redundancy has a
resource usage cost associated with it. For instance, Google uses 5

replicas for the F1 Advertising Back-end [3], which multiplies the
number of servers required to run this service by that factor.

Furthermore, F1 is not an isolated example, since redundancy is
present in a large fraction of the systems that are part of the so�-

ware stack of major companies such as Google or Facebook [22].

�us, redundantly storing data and performing computations in
multiple servers increases the energy cost and uses resources that

otherwise could be allocated to serve other types of requests. Nev-
ertheless, this expense is seen as an important insurance, because

faults lead to service downtime which, in turn, affects revenue [5].

On an orthogonal direction, energy efficiency is also a concern
for data center operators, as it impacts the requirements and conse-

quently the cost of the infrastructure for power delivery. �is is a
pressing problem both because the power consumption of servers

is increasing with the advances in density and number of cores,
and because the cost associated with an increase in power capacity

can be very high, reaching tens of thousands of USD per additional

MegaWa� [10].
Moreover, while over-subscription of data centers’ power sup-

ply allows for accommodating infrequent correlated spikes in server
power consumption, it exposes data centers to the risk of tripping

power breakers and causing outages. For instance, Facebook ini-

tially had to disable dynamic overclocking (Intel Turbo Boost [12])
in one of its clusters, due to an insufficient power margin, despite

the potential benefits in performance of this technology. To safely
enable turbo mode while avoiding the risk of outages in high load

periods, they designed a power management system to cap energy

consumption according to the data center power budget [24].
To lower energy consumption while also maintaining and even

improving performance, a recent approach called computational
sprinting [21] exploits the thermal capacitance of materials to acti-

vate cores (parallel sprinting) or overclocking the CPU (frequency

sprinting), thus exceeding the sustained cooling capabilities of the
system for short periods. As a result, this scheme is able to im-

prove application responsiveness by up to 6x and save about 30%
on power for a conventional Core i7 Desktop chip, as a conse-

quence of finishing computations in a shorter amount of time [20].

�is technique was also extended to data centers, in which more
interactive workloads such as search or news feeds, that exhibit

occasional bursty behavior, can benefit from short performance
boosts [25].

Techniques like computational sprinting, that push the limits of
what the hardware is designed to do, are conservative with respect

to the safety of computations. �is is mainly because exceeding

hardware specifications leads to system instability. For instance,
overclocking or activating a large number of cores for long peri-

ods leads to overheating, and exceeding the�ermal Design Power
(TDP) of the circuit may cause faults [17], reduce the lifespan, or

even physically damage the chip [13]. Hence, a�er each sprint the

CPU ought to switch to a cool-off mode.
Notwithstanding, even outside stable configurations, overclock-

ing has been explored with interesting results. For instance, DSP-
accelerators implemented with FPGAs can save up to 39% on hard-

ware resources by overclocking for the same output quality [7]. It
was also observed that as the frequency increases the errors in com-

putations gradually appear in the output, up to the point where the

program stops producing meaningful results.
In this paper, we envision bringing together these two vectors,

by leveraging the redundancy that is already present in a large
fraction of data center systems to safely push the limits of com-

putational sprinting in data center environments. In other words,

our goal is to aggressively explore overclocking se�ings, while tak-
ing advantage of the existing redundancy introduced by fault toler-

ance protocols to systematically mask faults that surface, in order
to extend the benefits of sprinting (energy efficiency/performance).

Furthermore, we intend to explore the synergies and subtle inter-
actions between the two vectors. For instance, the sprints can be

coordinated in a way that a subset of the replicas uses a more ag-

gressive but unsafe sprinting to decrease the overall latency, but
there is also a sufficient number of non-sprinted replicas that check

the results and ensure both availability and correctness in the case
of faults.

�e remainder of the paper provides an overview of the key

techniques that we can leverage as building blocks.

http://arxiv.org/abs/1704.05112v1


MARS’17, April 2017, Belgrade, Serbia D. Porto et al.

2 COMPUTATIONAL SPRINTING

Advances in CMOS technology have enabled the design of modern
multi-core processors, packing an increasing density of transistors

at each new generation. However, more transistors implies an in-

crease in power density, at a rate which exceeds the ability to dis-
sipate the heat generated [20]. As a result, continuously operating

all the processing units at full power can permanently damage the
chip due to overheating. Consequently, some of the cores must

remain off most of the time, a limitation known as dark silicon [8].

While it is not possible to activate all the processor cores at once
in a sustainable way, there exist proposals for optimizing perfor-

mance within safe temperature and power limits. �ese solutions
(outlined next), leverage the fact that a�er activating a sprint, the

temperature of the components does not rise instantaneously. In-
stead, it can take a few seconds for the heat to propagate through

the chip package, allowing certain workloads to finish before it

overheats.
Parallel sprinting. �is approach consists of activating various

dark silicon cores for up to a time limit (e.g., 1 sec.) before deactivat-
ing cores to cool off. Parallel sprinting can be optimized according

to two policies: for maximum responsiveness, it activates all cores

at maximum frequency and voltage; for optimal energy efficiency,
it activates all cores at minimum frequency and voltage [21]. Par-

allel sprinting is particularly interesting for mobile devices since a
large part of mobile processors are comprised of accelerators that

are inactive most of the time. In addition, mobile applications nor-
mally have interactive workloads that are characterized by short

bursts and long idle times waiting for user input [20].

Note that there is an interesting research question, which we in-
tend to explore, of whether data center workloads also have such

characteristics. However, even if they do not, we can still a�empt
to split replicas in an alternating fashion between a group of repli-

cas that are sprinting and another group that are cooling off.

Frequency Sprinting. A concrete example of frequency sprinting
is the dynamic overclocking technology presented in commercial

products such as Intel processors with Turbo Boost 2.0 [12]. In
a nutshell, Turbo Boost increases the frequencies and voltages of

processor cores above a normal safe operation threshold for short
periods. �e sprint frequency target is defined automatically ac-

cording to the available resources, allowing the processor to im-

prove performance of both single and multi-threaded workloads.
�e algorithm that controls when sprinting is activated, takes into

account the current frequencies of processor cores, the tempera-
ture of the package, and its power consumption [13].

Data center sprinting. Data centers can also experience bursty

workloads, e.g., due to shared resources, maintenance activities,
garbage collection events, or spikes in service popularity [4, 11].

�erefore, they might be a good match for sprinting. Moreover,
the dark silicon phenomenon is likely to be prevalent in data cen-

ters, as supported by predictions that stated that by 2024 more
than 50% of the chip must be powered off [9]. A current approach

called Dynamo [24] employs power capping to enable frequency

sprinting while ensuring that the energy drawn remains within
the power budget limits. Alternatively, [25] employs coordinated

parallel sprinting, using the existing data center backup power sup-
ply (e.g. ba�eries), to provide the extra power for both sprint and

cooling.

Overclocking. Pushing hardware to work beyond the prescribed

frequency has been studied by other research communities [23].
One approach is increasing the frequency, without sufficiently in-

creasing the voltage, which can lead to faults, because it may vio-
late the propagation delays of circuit critical paths. An interesting

characteristic of these fault pa�erns is that errors gradually appear

in the output as frequency increases. �is gradual slope in the
fault behavior happens because circuit designers are conservative

in the estimates of path delays and keep a guard margin between
the estimated clock frequency and the reported maximum clock

frequency [6], opening the opportunity to explore these limits.

3 FAULT TOLERANCE

Data center systems o�en rely on distributed replication proto-

cols for operating correctly in the presence of faults. �ese pro-
tocols are designed under certain assumptions about the environ-

ment, such as fault behavior (e.g, crash, fail-stop, or Byzantine) and
timing (e.g., the synchronous vs. the asynchronous model). Mak-

ing wrong assumptions about the environment can either put the

safety properties of the system at stake or impose an unnecessary
cost in terms of replication and consequently energy and infras-

tructure.
A pragmatic choice for replicating services are asynchronous

crash fault tolerant (CFT) protocols [15, 18], because they cover

the most common fault and timing behaviors. However, since ag-
gressive overclocking can lead to data corruption or errors in a

computation, CFT protocols may be too optimistic for sprinting.
Byzantine fault tolerant (BFT) protocols [1, 2, 14] are able to cap-

ture data corruption, but they are pessimistic regarding the behav-

ior of faulty replicas. In particular, a BFT adversary may control a
fraction of the replicas, allowing collusion, creating the worst case

a�ack scenario. Such pessimism leads to a higher replication costs.
Visigoth fault tolerance (VFT) [19] allows for calibrating the

fault tolerance of the system according to the deployment. While
it can be configured to capture only crashes with the same repli-

cation requirements of CFT, VFT can also capture data corruption

with a small additional cost. When compared to BFT, the replica-
tion requirements of VFT grows slower as the number of tolerated

faults increases. �is is because VFT assumes bounded collusion,
i.e. the number of replicas that deviate from their expected behav-

ior in the same way simultaneously. One of the reasons why this

assumption may be realistic for overclocked systems is that the
variations in the chip manufacturing process causes processors to

have different stability configurations [7]. Additionally, we can
enforce such diversity by carefully controlling overclocking at dif-

ferent replicas.
Other models have been proposed along the same lines as VFT,

namely XFT [16], which has the same replication requirements

as CFT while capturing Byzantine behavior, although not simul-
taneously with asynchrony. As future work, we can also explore

whether this variant in the set of assumption is met in practice.

4 CONCLUSION

We presented our vision on the potential of combining computa-

tional sprinting and fault tolerance to enable higher savings on en-
ergy and improved performance for replicated systems. We intend

to explore challenges of this approach, by designing and imple-
menting a system that explores the opportunities identified here.



Making data center computations fast, but not so furious MARS’17, April 2017, Belgrade, Serbia

ACKNOWLEDGMENTS

�is research is funded by the European Research Council (ERC-
2012-StG-307732) and by the FCT (UID/CEC/50021/2013).

REFERENCES

[1] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the �ird Symposium on Operating Systems Design and Implemen-
tation (OSDI ’99). 173–186.

[2] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi,
Mike Dahlin, and Taylor Riche. 2009. Upright Cluster Services. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP ’09).
277–290.

[3] James C. Corbe�, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean �inlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI’12). 251–264.

[4] Jeffrey Dean and Luiz André Barroso. 2013. �e tail at scale. Commun. ACM 56,
2 (feb 2013), 74.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
value Store. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (SOSP ’07). 205–220.

[6] Rui Policarpo Duarte and Christos-SavvasBouganis. 2012. High-level linear pro-
jection circuit design optimization framework for FPGAs under over-clocking.
In Field Programmable Logic and Applications (FPL), 2012 22nd International Con-
ference on. IEEE, 723–726.

[7] Rui Policarpo Duarte and Christos-Savvas Bouganis. 2015. ARC 2014 Over-
Clocking KLT Designs on FPGAs Under Process, Voltage, and Temperature
Variation. ACM Trans. Reconfigurable Technol. Syst. 9, 1, Article 7 (Nov. 2015),
17 pages.

[8] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In Pro-
ceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA ’11). 365–376.

[9] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2012. Dark silicon and the end of multicore scaling. IEEE
Micro 32, 3 (2012), 122–134.

[10] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power Pro-
visioning for a Warehouse-sized Computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07). 13–23.

[11] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007.
Workload Analysis and Demand Prediction of Enterprise Data Center Applica-
tions. In Proceedings of the 2007 IEEE 10th International Symposium on Workload
Characterization (IISWC ’07). 171–180.

[12] Intel. 2011. Intel Turbo Boost 2.0. (2011).
h�p://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

[13] Intel. 2017. 6th Generation Intel Proces-
sor Families for S-Platforms Datasheet. (2017).
h�p://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf

[14] Rüdiger Kapitza, Johannes Behl, ChristianCachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
2012. CheapBFT: Resource-efficient Byzantine Fault Tolerance. In Proceedings of
the 7th ACM European Conference on Computer Systems (EuroSys ’12). 295–308.

[15] Leslie Lamport. 1998. �e Part-Time Parliament. (May 1998).
h�ps://www.microso�.com/en-us/research/publication/part-time-parliament/

[16] Shengyun Liu, Christian Cachin, Vivien�ema, and Marko Vukolic. 2016. XFT:
Practical fault tolerance beyond crashes. In 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’16). 1–32.

[17] Edmund Nightingale, John Douceur, and Vince Orgovan. 2011. Cycles, Cells and
Pla�ers: An Empirical Analysis of Hardware Failures on a Million Consumer
PCs. 6th European Conference on Computer Systems (EuroSys ’11) (2011), 343–
356.

[18] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (ATC’14). 305–320.

[19] Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate, Flavio Jun-
queira, and Rodrigo Rodrigues. 2015. Visigoth Fault Tolerance. 10th European
Conference on Computer Systems (EuroSys ’15) (2015), 8:1—-8:14.

[20] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papae�hymiou, Kevin P.
Pipe, �omas F. Wenisch, and Milo M.K. Martin. 2013. Computational Sprinting
on a Hardware/So�ware Testbed. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). 155–166.

[21] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papae�hymiou, Kevin P.
Pipe, �omas F. Wenisch, and Milo M K Martin. 2012. Computational sprinting.
In 18th Symposium on High Performance Computer Architecture (HPCA ’12). 249–
260.

[22] Malte Schwarzkopf. 2015. Operating system support for warehouse-scale comput-
ing. Ph.D. Dissertation. University of Cambridge, St John’s College.

[23] Kan Shi, D Boland, E Sto�, S Bayliss, and G A Constantinides. 2014. Datapath
synthesis for overclocking: Online arithmetic for latency-accuracy trade-offs.
51st ACM/EDAC/IEEE Design Automation Conference (DAC ’14) (2014), 1–6.

[24] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, San-
jeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dynamo: Facebook’s
Data Center-wide Power Management System. In Proceedings of the 43rd Inter-
national Symposium on Computer Architecture (ISCA ’16). 469–480.

[25] Wenli Zheng and Xiaorui Wang. 2015. Data Center Sprinting: Enabling Compu-
tational Sprinting at the Data Center Level. In 35th IEEE International Conference
on Distributed Computing Systems (ICDCS ’15), Vol. 2015-July. 175–184.

http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
https://www.microsoft.com/en-us/research/publication/part-time-parliament/

	Abstract
	1 Introduction
	2 Computational sprinting 
	3 Fault tolerance
	4 Conclusion
	References

