
1©2020 VMware, Inc.

Building Scalable and Flexible
Cluster Managers Using
Declarative Programming

Lalith Suresh, Joao Loff1, Faria Kalim2,
Sangeetha Abdu Jyothi3, Nina Narodytska,
Leonid Ryzhyk, Sahan Gamage, Brian Oki,
Pranshu Jain, Michael Gasch

VMware, 1IST (ULisboa) / INESC-ID,
2UIUC, 3UC Irvine and VMware

Cluster
Managers

DCM J
Code-generate

implementations
from high-level
specifications

Hard to
Build L

2

Pods

Nodes

3

Nodes

Place us on the
same rack!

Do NOT place us
on the same rack!

POD
§ 2GB RAM
§ 16GB disk
§ 1 core

Distribute us evenly!

30 hard and soft
constraints

NP-Hard
Multi-dimensional
bin-packing with

constraints
4

This Photo by Unknown Author is licensed under CC BY-NC 5

https://slm508hmd.wordpress.com/
https://creativecommons.org/licenses/by-nc/3.0/

Custom
Best-effort
Heuristics

6

Scalability? Decision quality? Extensibility?
Can miss feasible solutionsChallenging with complex

constraints
Hard to add new policies

and features

Custom
Best-effort
Heuristics

7

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Our approach

Declarative Cluster Managers (DCM)

8

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

Scalability Decision quality Extensibility

Our approach

Declarative Cluster Managers (DCM)

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

9

Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than

Kubernetes Scheduler
(500 node scale)

Our approach

Declarative Cluster Managers (DCM)

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16 18 20 22 24
End−to−end pod creation latency (s)

EC
DF

DCM default−scheduler (sampling)

10

Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than

Kubernetes Scheduler
(500 node scale)

Policies in <20 lines of SQL
Non-trivial features

(Unified Pod/VM scheduling)

Our approach

Declarative Cluster Managers (DCM)

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

11

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Programming Model

12

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

Foreign Key

Variable
Columns

13

Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

CREATE VIEW avoid_mem_overload AS
SELECT *
FROM pods
JOIN nodes

ON pods.node = nodes.node
CONSTRAINT CHECK

(nodes.mem_overload = false)

@ hard constraint

Select some rows

Predicate

Hard
Constraints

14

Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE VIEW load_balance AS
SELECT min(spare_mem_capacity)
FROM spare_capacity_by_node

@ soft constraint

Node Spare Mem Capacity

?
?
?

Scalar expression to maximize

q

Soft
Constraints

15

Programming Model

Express policies concisely using joins,
aggregates, group bys, sub-queries,

correlated sub-queries, arrays…

16

model = Model.create(dbConnection,
constraints.sql);

model.solve();

Instantiate different models for
different tasks and timescales

17

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

DCM Compiler

18

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {

if (t1.get(t1_it).getB() == t2.get(t2_it).getB()
&& t2_e. get(t2_it).getE() == 10) {

IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1,

new IntVar[]{t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])
| i -> range(t1), j -> range(t2),

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL
Parsing, program

analysis

Phase 2, IR
Convert to list

comprehension IR,
optimization passes

Phase 3, Backend
Backend-specific

optimization passes,
generate code to

efficiently traverse
input tables and

encode checks into
low-level constraints

Flagship backend
Generates Java code that

interfaces with
Google OR-Tools CP-SAT solver

19

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {

if (t1.get(t1_it).getB() == t2.get(t2_it).getB()
&& t2_e. get(t2_it).getE() == 10) {

IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1,

new IntVar[]{t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])
| i -> range(t1), j -> range(t2),

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL
Parsing, program

analysis

Phase 2, IR
Convert to list

comprehension IR,
optimization passes

Phase 3, Backend
Backend-specific

optimization passes,
generate code to

efficiently traverse
input tables and

encode checks into
low-level constraints

Iterate efficiently over tables
Filter out rows

Encode constraints

20

Solver performance is
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

21

Solver performance is
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[5, 6, 7] [6, 8]

22

Solver performance is
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[6] [1, 2, 3]Solver fixes
to 6

23

Solver performance is
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[6] [6, 8]

24

Solver performance is
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[6] [6, 8]

25

• Reduce number of introduced
variables and constraints

• Leverage specialized algorithms
(i.e., global constraints)

Benchmark
Assign 50 tasks to 1000 workers

Naïve: 25 seconds

With optimizations: 85 ms!

Solver performance is
highly sensitive
to the encoding

26

Scalability Decision quality Extensibility

Evaluation

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

27

Scalability

Evaluation

Kubernetes
Scheduler

28

• 500 node Kubernetes cluster
• Deploy a series of apps in an open-loop
• Azure 2019 trace
• Inter-pod anti-affinity constraint

Do NOT place us
on the same node!

Recommended best practice,
but a challenging constraint

Kubernetes Scalability Evaluation

29

30

Kubernetes Scalability Evaluation

31

No anti-affinity constraints

50% of apps with anti-affinity
constraints

100% of apps with anti-affinity
constraints

Kubernetes Scalability Evaluation

Baseline samples
only 50% of nodes

32

p95 latency

DCM = 5.33s
Baseline = 4.13s

Kubernetes Scalability Evaluation

33

Kubernetes Scalability Evaluation

34

DCM cuts 95th percentile
latency in half

Kubernetes Scalability Evaluation

More details in the paper!
Compiler internals, debugging, lessons learnt,

DCM’s generality and limitations…

35

Cluster state
Database

Constraints
In SQL

Generated
Code

Constraint
Solver

Scalability Decision quality Extensibility

Cluster
Managers

Hard to
Build L

DCM J
Code-generate

implementations
from high-level
specifications

Thank you!
lsuresh@vmware.com

Code: https://github.com/vmware/declarative-cluster-management/

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16 18 20 22 24
End−to−end pod creation latency (s)

EC
D

F

DCM default−scheduler (sampling)

36

Kubernetes
Scheduler

VM Load
Balancing Tool

Distributed
Transactional

Datastore

