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Nodes

Place us on the 
same rack!

Do NOT place us 
on the same rack!

POD
§ 2GB RAM
§ 16GB disk
§ 1 core

Distribute us evenly!

30 hard and soft 
constraints

NP-Hard 
Multi-dimensional 
bin-packing with 

constraints
4



This Photo by Unknown Author is licensed under CC BY-NC 5

https://slm508hmd.wordpress.com/
https://creativecommons.org/licenses/by-nc/3.0/


Custom
Best-effort
Heuristics

6



Scalability? Decision quality? Extensibility?
Can miss feasible solutionsChallenging with complex 

constraints
Hard to add new policies

and features

Custom
Best-effort
Heuristics
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Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than 

Kubernetes Scheduler
(500 node scale)

Our approach
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Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than 

Kubernetes Scheduler
(500 node scale)

Policies in <20 lines of SQL
Non-trivial features 

(Unified Pod/VM scheduling)

Our approach
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Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

Foreign Key

Variable 
Columns
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Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

CREATE VIEW avoid_mem_overload AS
SELECT * 
FROM pods
JOIN nodes 

ON pods.node = nodes.node
CONSTRAINT CHECK 

(nodes.mem_overload = false)

@ hard constraint

Select some rows

Predicate

Hard 
Constraints
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Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE VIEW load_balance AS
SELECT min(spare_mem_capacity) 
FROM spare_capacity_by_node

@ soft constraint

Node Spare Mem Capacity

?
?
?

Scalar expression to maximize

q

Soft 
Constraints
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Programming Model

Express policies concisely using joins, 
aggregates, group bys, sub-queries, 

correlated sub-queries, arrays…
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model = Model.create(dbConnection, 
constraints.sql);

model.solve();

Instantiate different models for
different tasks and timescales
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for (int t1_it = 0; t1_it < t1.size(); t1_it++) { 
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {

if (t1.get(t1_it).getB() == t2.get(t2_it).getB()
&& t2_e. get(t2_it).getE() == 10) {

IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1, 

new IntVar[]{t1.get(t1_it).getCVar(), 
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b 
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])  
| i -> range(t1), j -> range(t2), 

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL
Parsing, program 

analysis

Phase 2, IR
Convert to list 

comprehension IR,
optimization passes

Phase 3, Backend
Backend-specific 

optimization passes, 
generate code to 

efficiently traverse 
input tables and 

encode checks into 
low-level constraints

Flagship backend
Generates Java code that 

interfaces with 
Google OR-Tools CP-SAT solver
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for (int t1_it = 0; t1_it < t1.size(); t1_it++) { 
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {

if (t1.get(t1_it).getB() == t2.get(t2_it).getB()
&& t2_e. get(t2_it).getE() == 10) {

IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1, 

new IntVar[]{t1.get(t1_it).getCVar(), 
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b 
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])  
| i -> range(t1), j -> range(t2), 

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL
Parsing, program 

analysis

Phase 2, IR
Convert to list 

comprehension IR,
optimization passes

Phase 3, Backend
Backend-specific 

optimization passes, 
generate code to 

efficiently traverse 
input tables and 

encode checks into 
low-level constraints

Iterate efficiently over tables
Filter out rows

Encode constraints
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Solver performance is 
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator
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Solver performance is 
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[ 5, 6, 7 ] [6, 8]
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Solver performance is 
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[ 6 ] [1, 2, 3]Solver fixes
to 6
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Solver performance is 
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Solver performance is 
highly sensitive
to the encoding

V2V1 !=

Constraint
Propagator

[ 6 ] [6, 8]
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• Reduce number of introduced 
variables and constraints

• Leverage specialized algorithms
(i.e., global constraints)

Benchmark
Assign 50 tasks to 1000 workers

Naïve: 25 seconds

With optimizations: 85 ms!

Solver performance is 
highly sensitive
to the encoding
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Scalability

Evaluation

Kubernetes
Scheduler
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• 500 node Kubernetes cluster
• Deploy a series of apps in an open-loop
• Azure 2019 trace
• Inter-pod anti-affinity constraint

Do NOT place us 
on the same node!

Recommended best practice,
but a challenging constraint



Kubernetes Scalability Evaluation
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Kubernetes Scalability Evaluation
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No anti-affinity constraints

50% of apps with anti-affinity
constraints

100% of apps with anti-affinity
constraints

Kubernetes Scalability Evaluation



Baseline samples
only 50% of nodes
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p95 latency

DCM =  5.33s
Baseline = 4.13s

Kubernetes Scalability Evaluation
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Kubernetes Scalability Evaluation
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DCM cuts 95th percentile
latency in half

Kubernetes Scalability Evaluation



More details in the paper!
Compiler internals, debugging, lessons learnt, 

DCM’s generality and limitations…
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Code: https://github.com/vmware/declarative-cluster-management/
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