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MOTIVATION

How can we know how happy people are?

« Subjective well-being has been widely studied in psychology
and related disciplines

- Measuring well-being can help individuals, organizations, and
governments choose policies that are not just in the best
economic interest, but which truly improve well-being

- Well-being is being tracked by governmental agencies and by
private surveying organizations, such as Gallup-Healthways

« Traditional surveying methodologies (i.e., expensive, coarse-
grained temporal and spatial resolutions, ...)




OUR WORK

Measuring well-being based on language in social media

*  We report on a initial study leverage existing resources:

« Large amounts of geo-referenced Twitter data
« Existing lexicons associating words to emotion ratings
« Data from previous well-being surveys (Gallup-Healthways)

« Learn predictive models for estimating well-being with basis
on variables (i.e., word counts) derived from textual contents
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RELATED WORK (1)

The Hedonometer Project - hitp:/hedonometer.orqg/
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RELATED WORK (2)

The World Well Being Project - hiip:/wwbp.org

Language used in tweets Characterizing Happy Communities:

from different U.S. counties
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OVERVIEW

« Estimating Well-Being

* Lexicons considered in this study
« Features representing well-being within particular geo-spatial regions
* Predictive modeling

 Experiments and Results
« Conclusions

e  Future Work




EMOTION LEXICONS

Our approach is based on counting words over tweets...

« Affective Norms for English Words (ANEW) Lexicon

« Atotal of 1,034 English words rated by humans according to:
Valence, pleasantness of the stimulus (i.e., from happy to unhappy)
Arousal, intensity of feeling (i.e., from excited to relaxed)
Dominance, how much the reader feels in control

- Adapted into other languages (e.g., Spanish)

Behavior
Research
Methods

« LabMT Lexicon from the Hedonometer

« Atotal of 10,222 English words rated according to happiness
(i.e., valence in the ANEW study) through crowdsourcing
« Consistent with ratings from the ANEW study e




FEATURES LEVERAGING
THE LEXICONS

Extrapolate word ratings into tweets... for each dimension:
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Compute features for geo-spatial regions, with basis on the
corresponding geo-referenced tweets
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PREDICTIVE MODELING

Regions are represented as 46-dimensional feature vectors...

Regions are associated to well-being scores, as obtained
through traditional surveys...

Regression modeling for estimating well-being:

* Linear least-squares regression modeling
y = Xb+e

« Model training with Elastic Net regularization approach

b = argminHy—Xsz + A1]|b]|1 —l-)\szHg
b




EXPERIMENTAL
METHODOLOGY

Large collection of Twitter data geo-referenced to the U.S. territory

* Approximately 500,000 tweets from the year of 2012
« Tweets containing words from the lexica used in our study
« 48 states in continental U.S. (i.e., except Hawaii and Alaska)

Gallup-Healthways Well-Being Index for 2012

* Phone interviews with approx. 1,000 individuals (7 days/week)
* National average of 66.5 in 100.0 (61.3 in West Virginia ; 69.4 in Colorado)

Evaluation through leave-one-out cross-validation

* Mean Absolute Error (MAE)

* Root Mean Squared Error (RMSE)
« Pearson’s correlation (p)

« Kendall’s correlation (7)




EXPERIMENTAL RESULTS (1)

Quintiles for predicted well-being scores Quintiles for Gallup-Healthways well-being index
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» Correlations of p = 0.7441 and 7 = 0.5862
- Study from the wwbp reported on slightly inferior values on data from 2010

* Low errors of MAE=0.92 and a RMSE=1.22
« Assigning average corresponds to MAE=1.40 and RMSE=1.73

« Errors in ranking states like Maryland, Minnesota and Nevada...




EXPERIMENTAL RESULTS (2)
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MAIN CONCLUSIONS

 We evaluated a simple approach for estimating well-being
through predictive models leveraging Twitter data

 Promising results in terms of correlations towards existing
well-being surveys, although much remains to be done:

« Check if our predictive models generalize well to other years
and/or across geographic regions

 Additional variables for accounting with Twitter’s demographics




FUTURE WORK

Increasing the number of geo-referenced tweets

« Explore automated geo-coding methods
* Important for thin-grained spatial-temporal resolutions

Estimate happiness ratings for more tweets

« Use distributional representations for words / documents
* Unsupervised embeddings (e.g., word2vec)

* Leverage ANEW:-like lexicons for building predictive models
for rating new words and/or documents

Other application domains besides tracking well-being

« Public health surveillance, public opinion, political pools, etc.
« See for instance
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