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Abstract

Function-as-a-Service has been notoriously difficult to com-
pose and integrate, leaving developers to resort to third-
party datastores and queues as means to share state between
functions. Applying this architecture on a geo-replicated
setting may produce inconsistent application states due to
replication delays and weak consistency guarantees, thereby
resulting in inconsistent function outputs and ultimately a
bad end-user experience. Rendezvous is a framework that
automatically ensures consistency of data in serverless appli-
cations using datastores, and guarantees that no stale values
are read.

CCS Concepts: • Software and its engineering → Con-

sistency; • Computer systems organization → Cloud

computing; • Information systems → Cloud based stor-
age; Remote replication.
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1 Problem Statement

Function-as-a-Service platforms provide cloud-based appli-
cations [4, 13, 21] with an elastic and scalable environment
where applications composed of sequences of stateless func-
tions can be dynamically executed in response to application
events [18].

In principle, functions execute without state and indepen-
dently of each other. However, a key open challenge within
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the serverless community is the direct communication be-
tween functions, with multiple approaches to address that
issue [11, 17, 27, 30]. Given the limited adoption of these
solutions by cloud providers, developers continue to rely on
supplementary storage layers such as standard datastores
[2, 5], caches [3], or message queues [6, 14] for sharing state
between functions.

Developers often use these storage layers in geo-replicated
settings with the expectation that written data will be readily
available to subsequent functions in different global regions,
overlooking the consistency semantics of these datastores’
replication algorithms [10, 12]. As developers write into one
replica of a service, the replication of that data to other data
centers – specially ones in different regions – introduces
propagation latency that developers don’t always account
for [26], and hence may observe stale information. Conse-
quently, the interaction between different functions that
access potentially stale data, might result in inconsistencies
across their execution.

To gain a better understanding of how these inconsisten-
cies can occur, consider the example application in Fig. 1
that depicts the workflow of a single request in a serverless
application. The example explores a Post-Notification appli-
cation [20] in which users upload new posts, and subscribers
receive notifications about new content. The application is
composed of two functions: awriter and a reader. Thewriter
executes, e.g. in Europe (EU), and receives as a parameter
the post to write and the poster’s identifier. Then, it writes
the post’s data and enqueues the corresponding notification
to the followers. The reader is triggered when a notification
is delivered to a follower, e.g. in the United States (US). Both
functions have access to a replicated storage service contain-
ing all posts, and the communication between them is done
through a messaging service with queues replicated across
both regions. The outline of a typical workflow is as follows:
➀ A user requests to upload a new post which triggers a

new writer function invocation.
➁ The writer function writes the post’s data in 𝑤𝑟𝑖𝑡𝑒𝑃 to

the underlying datastore in EU. The data is then asyn-
chronously propagated to US.

➂ The post’s identifier 𝑝𝑖𝑑 returned by the write operation
is then included in the notification event that is queued
by the writer function in𝑤𝑟𝑖𝑡𝑒𝑁 .
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Figure 1. Example of a generic request workflow in the Post-
Notification application [20].

➃ Upon replication to the US, the reader is triggered by
an event from which the post’s identifier is extracted in
𝑟𝑒𝑎𝑑𝑁 .

➄ The reader fetches the post’s content from the datastore
in the US region in 𝑟𝑒𝑎𝑑𝑃(𝑝𝑖𝑑).

➅ Finally, the notification and the post contents are deliv-
ered to the original poster’s followers.

The error may be observed in step ➄: if the notification
reaches US prior to the post becoming visible there, the
reader function will retrieve the post ahead of time, result-
ing in absent or outdated content. This reflects in additional
incorrect executions when forwarding the notification to
subscribers. This example illustrates how the behavior of
an application that works at global scale, has to take into
account the latency of datastore propagation across regions.
These phenomena, described by [20] as cross-service incon-
sistencies, also have an impact at the serverless level when
different functions interact across different regions.
In order to assess the impact of these inconsistencies

within AWS, we looked at the findings of Antipode [20]
for the Post-Notification application, represented in Fig. 1.
The experiment employs various combinations of both the
post data store and the notification queue. Table 1 details the
observed inconsistencies, and how different combinations of
datastores result in different percentages of observed incon-
sistencies. For instance, we can clearly see that using SNS
together with almost any post datastore results in a high
percentage of cross-service inconsistencies, which attests to
how optimized SNS geo-replication is in comparison with
post datastores.
Despite this evidence, cloud providers currently do not

offer a way for developers to ensure a consistent view within
their functions. Consequently, they must face the conse-
quences of these inconsistencies that negatively impact their
applications and, consequently, their users.

2 Challenges

There are three significant challenges to preventing incon-
sistencies in serverless environments.
Geo-replicated Datastores. Serverless applications of-
ten rely on geo-replicated datastores [2, 3, 5] to share state
between functions [25]. Due to the heavy preference for
availability, strong consistency is sacrificed, with developers

post datastore
MySQL DynamoDB Redis S3

qu
eu
e SNS 95% 95% 88% 100%

AMQ 8% 7% 13% 100%
DynamoDB 0% 0% 0% 13%

Table 1. Percentage of observed inconsistencies for several combi-
nations of off-the-shelf AWS services [20].

often settling for eventual consistency semantics [8, 10, 12,
29]. Therefore, data objects are not guaranteed to be immedi-
ately replicated, and functions may be unaware of potential
inconsistencies.
Lack of Coordination between Functions. Existing al-
ternatives that provide indirect function communication
[5, 14] implicitly introduce dependencies between them. The
lack of coordination makes it difficult to determine whether
data written by preceding and distinct function executions
is already visible to subsequent ones.
Restriction ofDatastoreModifications. Cloud providers
do not offer ways to modify the internal codebase of datas-
tores, which results in two further limitations: (i) they are
unable to accommodate the insertion and retrieval of addi-
tional metadata, and (ii) they do not offer developers efficient
and flexible detection mechanisms to detect changes in data-
store objects1.

3 Rendezvous

We present Rendezvous, a framework targeted at cloud
providers that enhances FaaS with a layer that automatically
enforces a consistent cross-function view of application data.
In short, Rendezvous verifies existing write and read oper-
ations within functions in order to provide a consistent view
of all the application’s data across multiple datastores while
preserving their underlying consistency semantics.

3.1 Overview

Rendezvous is built upon two main concepts: requests and
branches. A request is initiated from an external source (e.g. a
user request) which span multiple actions across the applica-
tion, including function executions and datastore operations.
Branches refer to the ramifications arising from a request’s
actions. Each branch represents an application’s execution
within a single datastore and across one or more regions. For
instance, in Fig. 1, the write post operation is initiated in EU
and propagated to US, causing this replication mechanism to
open a branch at two regions from a single write operation.
Branches store their identifier, their region(s), the datas-

tore, and their current status (OPENED or CLOSED) that iden-
tify the visibility of data in a datastore region represented by
the branch. Branches are opened upon initial creation and
1Although, for instanceMongo provides amechanism that allows developers
to hook into replication events [24], these types of features are typically
not available in other datastores.
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Figure 2. Example of Post-Notification application and respective
integration with Rendezvous.

closed when the objects, whose write operation represents
these branches, are visible at a specific region.

Requests contains brancheswhose status (opened or closed)
is tracked in relation to four contexts: globally, by datastore,
by region, and by both datastore and region. This is exempli-
fied in the data structure in Fig. 2. The request is considered
as completed when no branch is left open for a given context.
In practice, we delay the functions’ read operations until pre-
ceding writes from the same request are completed, waiting
for (geo-)replication to finish and reestablishing a consistent
state (signaled by the closing of its branch at all regions).

For example, in the Post-Notification inconsistency exam-
ple, Rendezvous corrects the inconsistency by:
a○ Registering the branch for the write post operation for

EU and US regions.
b○ The write operation to the datastore is extended to in-

clude additional metadata identifying the corresponding
branch.

c○ Subsequent reads are blocked until Rendezvous guaran-
tees replication has concluded, and all regions are con-
sistent.

3.2 Architecture

Rendezvous is composed of four core components: (i) a
metadata server that monitors the overall progress of re-
quests (ii) a shim layer (tailored to each datastore) that ex-
tends client calls with additional Rendezvous metadata,
(iii) a Rendezvous API library for applications to call the
metadata server and the shim layer, and (iv) a dedicated
datastore monitor for each datastore and region, that moni-
tors data replication and updates.
Metadata Server. The branching information is stored in
requests, branches and subscribers structures maintained by
the metadata server that tallies opened and closed branches
for each request. Meanwhile, the subscribers data structures

Figure 3. Datastore monitor execution and Rendezvous metadata
flow during the lifetime of branching subscription stream with a
metadata server.

are used to create queues of new branch identifiers to be
forwarded to the datastore monitors (see ahead).
Shim Layer. The shim layer replaces and extends orig-
inal datastore operations through a bolt-on approach [9,
20] hence preserving the underlying consistency semantics,
while transparently including Rendezvousmetadata in each
call. The metadata containing branch identifiers is included
in write operations and later replicated to any other datastore
node in other regions, where its presence ensures that the
post is visible to subsequent reads. In the Post-Notification
example, when attempting to write the post’s content, ➁ is
replaced by a call to the shim layer at b○. The branch identi-
fier is propagated alongside the post to be later detected in
US. This mechanism supports the detection of replication of
new objects to allow closing branches previously opened by
write operations at other regions.
API: Opening Branches. Prior to performing a datastore
write, it is necessary to register a new datastore branch at the
metadata server, by specifying the targeted datastore. This
branch is set as opened for all regions to which the write will
be eventually replicated. For instance, in Fig. 2, at a○, a branch
for the write post is registered for both regions by invoking
the RegisterBranch(rid=0, datastore=post-storage,
regions=[EU,US]). Afterward, themetadata server creates
and opens the branch, sets an OPENED status for both EU and
US regions, and returns a unique branch identifier, 𝑏𝑖𝑑 .
API: Wait for Branch Closing. Synchronization between
functions is the key aspect of Rendezvous. Their execu-
tion is coordinated through a waiting call that blocks while
data from previous write operations is not yet visible in
the reader’s region. In our system, this is translated into a
branch describing the replication of a write operation. This
mechanism is complemented by a datastore monitor, which
is responsible for automatically closing branches (detailed
ahead). Note that, in the event of a wait on multiple writes
onto the same datastore, a function must explicitly register
the branch that encompasses all the branches for those writes
and close it upon completion. This allows metadata servers
to identify which branch registrations must be awaited prior
to executing the core wait logic.

In Fig. 2, the synchronization is achieved by invoking the
remote WaitRequest(rid=0, datastore=post-storage,
region=US) at c○. The call blocks while branches are opened
in the post-storage node of US, ensuring that the reader will
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only attempt to read the post when it is guaranteed to be
available, maintaining a consistent execution.
Datastore Monitor. Ideally, each datastore should send
an event to the metadata server when a replication update
for a specific branch identifier arrives at the local region.
Although some datastores offer ways to react-to-replication
[2, 5, 24], this type of mechanism is not commonly available.

Hence, a datastore monitor process was implemented for
each local datastore that subscribes to publications provided
by the metadata server for every newly added branch (see
Fig. 3). When the datastore monitor is notified regarding
a new branch identifier (𝑏𝑖𝑑), it monitors the datastore for
its visibility in the region, and, as soon as the identifier is
visible, it notifies the metadata server to close the branch
with a CloseBranch(bid, region) call. We minimize the
performance impact of this long-lived connection with the
metadata server by using a subscription-based stream,which
is only triggered when fresh branching information arrives.
Fig. 2 illustrates how this process is employed. In the ex-

ample, there are two processes, one for each region (EU and
US). In the US, the process is notified by themetadata server
whenever a new identifier is created from the new registered
branch at a○. Next, it begins to monitor the visibility of the
post and its identifier (both written at b○). The process closes
the branch for that region by invoking CloseBranch(bid=0,
region=US), ensuring that all branches are closed in US. As
a result, the blocking WaitRequest is released at c○, thereby
allowing the reader to safely fetch the post at ➄ – without
risk of observing any inconsistent state.

3.3 Integration with Cloud Platforms

We intend for Rendezvous to be integrated by existing cloud
providers as part of their platforms that manage functions, in
a way that is completely transparent to the developer. In fact,
the only information provided by the developer would be
an acknowledgment at configuration time, that Rendezvous
would be enabled within a specific function. After this, cloud
platforms would take care of wrapping read and write calls
to datastores through our shim layer, and would also en-
hance interactions with Rendezvous-related metadata. More
concretely, write operations would be wrapped to register
new branches and inject metadata within the write to the
datastore. Read operations would automatically perform a
WaitRequest call which would always ensure a consistent
read by the underlying function. Both these calls would
transparently contact the metadata server to check on re-
quests and branches status. We also envision that developers
could have the flexibility to tune the configuration accord-
ing to their needs. A key example of this could be seen in
WaitRequest, where developers could relax the consistency
view over the datastores and explicitly bypass the call, effec-
tively trading correctness for performance.

Figure 4. Variation of consistency window for each datastore with
and without Rendezvous.

3.4 Optimizations

Rendezvous places one metadata server node in each re-
gion where functions are executed. This allows functions
to have local access, therefore making Rendezvous-related
calls always local. We detail our replication strategy in §3.5.
We also allow developers to bypass the default blocking

behavior of WaitRequest by either using a timeout (waiving
correctness) or by using an asynchronous callback when the
data is consistent, into a later point of their functions.

3.5 Replication and Fault Tolerance

The metadata server nodes are asynchronously replicated
between regions. This replication model boasts reduced over-
head for Rendezvous calls and allows our system to re-
main operational during network partitions, particularly for
branching registrations, albeit with the drawback extending
wait requests.

The metadata server takes advantage of a call context to
validate its connection with the datastore monitors to detect
potential failures. If invalidated by an error or crash on the
datastore monitor side, themetadata server promptly closes
the connection and retains the remaining identifiers in the
queue for an eventual reconnection. We envision this to be
further extended and supported by cloud providers, serving
as a means to provide real-time alerts and datastore monitor
recovery strategies in response to these failures.

4 Evaluation

We evaluated Rendezvous in order to assess the level of
performance and effectiveness. Our analysis concerns two
key factors: (1) its consistency window, and (2) its scalability.

4.1 Experimental Setup

Similarly to Fig. 1, we deployed the Post-Notification applica-
tion [20] in AWS using a pipeline of two Lambda functions,
placing the writer in EU and the reader in US. For the notifi-
cation queue, we used AWS SNS with notifications objects
flowing from the writer to the reader. We used four different
backends as the post-storage for each deployment: Redis,
DynamoDB, MySQL, and S3, and all of them were globally
replicated across EU and US. For Rendezvous, we deployed
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Figure 5. Time spent writing the post between Original vs. Ren-
dezvous, where metadata is included in the write operation.

one server per region, provisioned in AWS EC2 t2.xlarge
instances with 4 vCPU and 16 GiB RAM. Each server ran the
metadata server and the corresponding datastore monitor,
with asynchronous replication between regions. For each
evaluation run, we configured 1000 different posts, which
triggered a corresponding number of writer Lambdas.

Since we used AWS as our cloud provider, we had to emu-
late Rendezvous’s behavior by placing additional calls from
Fig. 2 in the corresponding functions. Both a○ and b○ were
placed in the writer, while c○, was placed in the reader im-
mediately before reading the post.

4.2 Rendezvous Consistency Window

For the first part of the evaluation, we focus on the cost of
enforcing consistency across the application execution.
We start by measuring the consistency window [20] for

each datastore without using Rendezvous. In our scenario,
the consistency window corresponds to the time between
the writer function writing the post to the datastore in the
EU and the post being read by the reader in the US. Note
that, for this metric, in the original application inconsis-
tencies might occur when the post is read, whereas in the
Rendezvous version no inconsistencies occur since Ren-
dezvous ensures the post is available before reading. Recall
that with Rendezvous, the post is only read after the block-
ing WaitRequest call returns.

The results can be observed in Fig. 4, where, for each data-
store, the baseline bars represent the original setup, whereas
the above bars concern the setup with Rendezvous. Looking
at the figure, we can observe that the additional consistency
window imposed by the usage of Rendezvous varies a lot de-
pending on the post’s storage, which is a direct consequence
of the duration of the WaitRequest call. This highlights that
the consistency windows are tightly coupled with the con-
sistency mechanisms of each datastore. For instance, Redis
requires only an extra 500ms, while S3 takes significantly
longer. Most of the increase in the consistency window stems
from the latency of replication specific to each datastore.
To confirm this and provide insight into the overhead of

just adding Rendezvous, we also measured the time required
to write the post in both setups. Fig. 5 presents the time spent
writing Rendezvousmetadata into thewrite post operation.

Figure 6. Relationship between throughput and latency observed
in a Rendezvous metadata server by varying the number of (i)
datastores for a fixed number of 200 clients, and (ii) clients for a
fixed number of 1 datastore.

Overall, this additional time never exceeds 70ms and is on
average 7% for the 4 datastores. This suggests that the values
are minimal in regard to the cost of enforcing consistency,
as shown in Fig. 4.

4.3 Rendezvous Scalability

We now focus our evaluation on measuring the performance
and scalability of our metadata server. We ran a set of 200
threads per client program, and each machine (1 to 5) was de-
ployed on an AWS EC2 t2.large instance with 2 vCPUs and
8 GiB RAM, in the same region as the server (EU). Each indi-
vidual client registered new branches in themetadata server
for a period of 2 minutes.

As depicted in Fig. 6, we conducted two experiments. First,
we evaluated the performance by varying the number of
datastores written to by a single function using a fixed num-
ber of 200 concurrent clients. Then, we changed the number
of clients with a single fixed datastore write operation.

For the first experiment, we can observe that the through-
put remains approximately the same when ranging from 1 to
20 datastores. Although the throughput is lower for a higher
number of datastores, since the metadata increases propor-
tionally with this number, Rendezvous still maintains the
same latency of response. This is an adequate performance as
we do not expect functions to employ a number of datastores
significantly larger than 20.

In the second experiment, we can observe that the through-
put increases with the number of concurrent clients, with a
peak of approximately 110ms with 1000 clients issuing close
to 9000 requests per second.

In comparison with the first experiment, we can infer that
the number of clients has a greater impact on the latency
than datastores. Overall, we argue that Rendezvous is able to
accommodate a large number of clients and their datastores,
with reasonable performance and scalability.

5 Related Work

Existing solutions provide communication alternatives be-
tween serverless functions, as well as coordination mecha-
nisms for stateful workflows.
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Communication in Serverless Applications. Ongoing
research already concerns efficient communication and inter-
mediate data sharing in serverless platforms [11, 17, 27, 30].
Both FMI [11] and Boxer [30] offer high-performance and
direct communication. FMI provides a messaging interface
for communication with collective operations. Boxer demon-
strates greater performance with function-to-function com-
munication when compared to resorting to storage systems
in data analytics [25]. Alternatively, Pocket [17] uses an in-
termediate and elastic system to share ephemeral data [16]
between functions.
Coordination in Serverless Applications. Current cloud
providers offer orchestration techniques [7, 15, 22, 23] that
are able to coordinate functions and build stateful workflows.
Decentralized and application-level orchestrators [19] may
also provide similar guarantees and workflow patterns with
existing cloud storage services. However, these solutions
do not address the consistency semantics of cloud storage
systems and are prone to inconsistencies across regions.
Cross-Service Consistency. Antipode [20] is a decen-
tralized solution that aims to enforce cross-service causal
consistency in distributed applications, mitigating consis-
tency violations as those reported in [1]. The work relies on
metadata propagation throughout the request execution to
capture dependencies and define causality between distinct
events. In a similar way to Rendezvous, it can enforce syn-
chronization in actions dependent on replicated information.
FlightTracker [28] is a solution that focuses on enforcing
stronger session guarantees at Facebook using a centralized
server to store clients’ metadata. Using a similar centralized
approach, Rendezvous also leverages metadata but, in this
case, to coordinate serverless applications.

6 Future Work

Rendezvous still exhibits certain limitations, which we aim
to address in future research.
Metadata Server Until now, we focused on providing
consistency guarantees for serverless functions that share
data in geo-replicated datastores, and addressing any con-
sistency violation in read operations. We are aware that
Rendezvous currently lacks fault-tolerance guarantees for
metadata servers, particularly within the regions hosting a
single node. In future research, we aim to tackle these issues
by implementing replication strategies within each region, as
well as refining the current replication model across regions.
Datastore Monitor Currently, neither metadata server
nor datastore monitor support full recovery from a potential
datastore monitor crash. Moving forward, we intend to ad-
dress this in addition to replicating the datastore monitors.

7 Conclusion

In serverless computing, developers frequently turn to geo-
replicated storage services to exchange state between func-
tions, which may cause inconsistent executions due to the

inherent latency of replication. We proposed Rendezvous,
a framework that enhances stateless functions using repli-
cated datastores, allowing for the synchronization of repli-
cated data shared across distinct executions. Rendezvous
eliminates inconsistent read operations while preserving the
consistency semantics of datastores, and is designed to be
integrated within cloud platforms by providing complete
transparency to the developers.
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